Mila Learning macro variables using Auto encoders

FLOWCODE
PRIVACY,FLOWCODE.COM

Maitreyi Swaroop^{1,3}, Eric Elmoznino^{1,2}, Dhanya Sridhar^{1,2}
¹Mila, ²Université de Montreal, ³IIT Kharagpur

Motivation

Most causal variables that we reason over, in both science and everyday life, are coarse abstractions of low-level data.

Related work: Causal Feature Learning

- Aggregates micro variables by defining equivalence classes (macro variables) to which they are mapped.
- Macro variables are discrete and not interpretable.

Method: DeepCFL

$$\mathcal{L} = -ELBO(g_x, p_x) - ELBO(g_y, p_y) + \lambda \frac{||f(x_h) - y_h||^2}{var(y_h)}$$

Macro variable desiderata

- 1. Macro variables are simpler than their micro variables
- 2. Macro variables share MI with their micro variables
- 3. A simple mechanism relates macro variables

f_{xy} should be *simple*

Symbolic function
Linear transform
Shallow neural net
Sparsity regularizer
...

Empirical Studies

Observations

Since the correct macro variables are the digit identities, a metric of DeepCFL's performance is how well the different classes of digits are clustered

